
Network Simulator Tools and GPU Parallel Systems
Leonid Djinevski, Sonja Filiposka, and Dimitar Trajanov

Abstract – In this paper we discuss the possibilities for
parallel implementations of network simulators. Specifically we
investigate the options for porting parts of the simulator on GPU
in order to utilize its resources and obtain faster simulations. We
discuss few issues which are unsuitable for the GPU architecture,
and we propose a possible work around for each of them. We
introduce a design of parallel module that interconnects with a
network simulator, while maintaining transparency in aspect of
the simulation modeler.

Keywords – Network Simulator Tools, HPC, GPGPU, CUDA,
OpenCL.

I. INTRODUCTION

Network simulators are tools used by researchers in

order to test new scenarios and protocols in a controlled
and reproducible environment, allowing the user to
represent various topologies, simulate network traffic using
different protocols, visualize the network and measure the
performances. Although network simulators are very
useful, most of the widely used network simulators do not
scale [1]. Simulation of medium to large networks results
in a long simulation time which is not practical for
investigating protocols.

With the development of parallel systems, significant
processing power is becoming available. The single
instruction, multiple data (SIMD) models of parallel
systems, more particular the Graphics Processing Units
(GPUs) have provided a massive acceleration.
Additionally, the low cost of these units have brought a
huge performance in the insides of regular personal
computers (PCs). The first attempts for utilizing the GPU
hardware for general purpose computing proved to be a
very complicated process [2]. However, with development
of the Compute Unified Device Architecture (CUDA)
programming model in 2007 [3], and also with the
publishing of the standard Open Computing Language
(OpenCL) late 2008 [4], general purpose computing on
graphics hardware has significantly improved. Therefore,
many general purpose applications have been ported for the
GPU architecture.

Network simulators have traditionally been developed
for execution on sequential computers. Developing a
parallel implementation for a network simulator is not
straight forward. There are many architectural issues that

have to be taken in to account and they might prevent the
complete utilizing of the GPU resources.

In this paper we review few of the most widely used
network simulators. We also discuss the possibilities for
parallel implementations of network simulators.
Specifically we investigate the options for porting parts of
the simulator on GPU in order to utilize its resources and
obtain faster simulations. Additionally, we identify
modules which carry the biggest workload as well as
possible, issues that make the network simulators
unsuitable for the GPU architecture, and we propose
resolutions to work around these issues.

This rest of this paper is organized as follows: We
review implementations of network simulator tools in
Section 2, followed by a short overview of the GPU
computing in Section 3. In Section 4 we identify which
modules of the network simulator contain intensive
workloads. Also in this Section we propose a framework
which will utilize the GPU resources. In Section 5 we
analyze performance, and we conclude and propose future
work in Section 6.

II. RELETED WORK

There are two types of approaches for developing a

parallel network simulator. One can create the parallel
simulator from scratch, where all the simulation software is
custom designed for a particular parallel simulation engine.
For this approach a significant amount of time and effort
are necessary to create a useable system. This is so,
because new models must be developed, and therefore
validated for accuracy.

An example of this approach is the Global Mobile
Information System Simulator (GloMoSim), which is a
scalable simulation library designed at UCLA Computing
Laboratory to support studies of large-scale network
models, using parallel and/or distributed execution on a
diverse set of parallel computers [5]. GloMoSim beside
sequential adopts parallel simulation model using libraries
and layered API. The libraries are developed using
PARSEC [6], which is a parallel C based programming
language which uses message based approach.

Another example is the Scalable Simulation Framework
(SSFNet) which claims that is a standard for parallel
discrete event network simulation [6, 7]. SSFNET’s
commercial Java implementation is becoming popular in
the research community, but SSFNet for C++ (DaSSF)
does not seem to receive nearly as much attention, probably
due to the lack of network protocol models. It is a high
performance network simulator designed to transparently

Leonid Djinevski, Sonja Filiposka and Dimitar Trajanov are
with the E-TNC Research Group, Faculty of Computer Science
and Engineering, Ss. Cyril and Methodius University, Rugjer Bo-
shkovikj 16, 1000 Skopje, Macedonia, E-mail: {leonid.djinevski,
sonja.filiposka, dimitar.trajanov}@finki.ukim.mk.

111

Proceedings of Small Systems Simulation Symposium 2012, Niš, Serbia, 12th-14th February 2012

utilize parallel processor resources, and therefore scales to
a very large collection of simulated entities and problem
sizes.

The second approach for developing parallel/distributed
simulation involves interconnecting with existing
simulators. These federated simulations may include
multiple copies of the same simulator (modeling different
portions of the network), or entirely different simulators.
Few parallel implementations of this approach are
presented in the following.

The NS-2 Simulator [8] is widely used in the
networking research community and has found large
acceptance as a tool to experiment new ideas, protocols and
distributed algorithms. It is a discrete event driven
sequential network simulator, developed at UC Berkeley by
numbers of different researchers and institutions. NS-2 is
suitable for simulating and analyzing either wired or
wireless network sand is used mostly for small scale
simulations. NS-2 is written in C++ and OTcl. The users
define the network topology structure, the nodes, protocols
and transmitting times in an OTcl script. The open source
model of NS-2 encourages many researchers from
institutions and universities to participate and contribute to
improve and extend the project. NS-2 plays an important
role especially in the research community of mobile ad hoc
networks, being a sort of reference simulator [9]. Adding
new network objects, protocols and agents requires creation
of new classes in C++ and then linking them with the
corresponding OTcl objects.

A parallel simulation extension for the traditionally
widely used NS-2 simulator has been created at the
Georgia Institute of Technology (PADS Research Group),
but it is not in wide use. The Parallel/Distributed NS
(PDNS) [10] was designed to solve the NS-2 problems with
large scale networks by running the simulator on a network
of workstations connected either via a Myrinet network, or
a standard Ethernet network using the TCP/IP protocol
stack. In that way the overall execution time of the
simulation should be at least as fast at the original single
workstation simulation, allowing simulating large scale
networks.

Georgia Tech Network Simulator (GTNetS) is a
network simulation environment which uses C++ as a
programming language [11]. GTNetS is designed for
studying the behavior of moderate to large scale networks.
The simulation environment is structured as an actual
network with distinct separation of protocol stack layers.

OMNeT++ is a network simulation library and
framework, primary used for simulation of communication
networks, but because of its flexible architecture can be
used to simulate complex IT systems too. OMNeT++ offers
an Eclipse based IDE and the programming language used
is C++ [12, 13].

In this paper we introduce a different approach for
parallelizing network simulators that is based on federation
simulations. In order to fully utilize the available hardware
we investigate the possibility to port the computing

intensive network simulator modules to the GPU and thus
obtain faster simulation time.

III. GPGPU, CUDA AND OPENCL

In this section we summarize some key fact of the GPU

architecture so we can provide and discuss information
about parallel module implementation of a network
simulator. The origin of General-Purpose computing on
Graphics Processing Units (GPGPU) comes from graphics
applications, so in similar fashion, CUDA or OpenCL
applications can be accelerated by data-parallel
computation [14] of millions of threads. A thread in this
context means an instance of a kernel, which is a program
that is running on the GPU. This way, the GPU device can
be visualized as a SIMD parallel machine. Therefore,
understanding of the graphics pipeline to execute programs
is not needed. In a nutshell, CUDA or OpenCL provide
convenient memory hierarchy, allowing maximizing the
performance, by optimizing the data access. The memory
hierarchy of a GPU device is presented in Fig 1.

Fig. 1. GPU device memory hierarchy

The GPU device has off-chip memory, so called global

memory. Since this memory is separated from the GPU, a
single fetching of data takes at least 500 cycles. This is the
slowest memory on the device, and therefore the most
expensive performance wise.

The next level in the memory hierarchy is the local
memory, which is shared by a number of threads organized
in work groups. This memory is very small 16 – 48KB, and
it can be accessed almost as fast as register memory
denoted in Fig 1 as private memory which is exclusive to a
single thread. Therefore, a program will compute correctly
if there is no data dependence between threads in different
work groups. Exception is that within the same work group
thread can have dependence because they can exchange
data using the local memory.

112

Proceedings of Small Systems Simulation Symposium 2012, Niš, Serbia, 12th-14th February 2012

IV. NETWORK SIMULATOR MODULES

Network simulator algorithms are usually not so

straight forward for mapping on the GPU, therefore we
need to identify the workload of each module. The modules
with the biggest workload are candidates for
parallelization. Since, the GPU is a SIMD, in order to
utilize the architecture, we look for segments of the
algorithm code which are repeated regularly. Usually, these
code segments are for loops or loops for which control flow
can be predicted.

Once we identify which modules to parallelize, few
issues have to be taken in to account. If the code segment
works with small amount of data, the GPU device
parallelism cannot be expressed. Another major issue is the
control flow divergence. If the code segment contains
much branching, the parallel code gets serialized, thus
minimal or no performance increase is achieved.
Nevertheless, in order to tweak the algorithm, few methods
can be used to decrease the divergence. However, the worst
divergence situation is presented in Listing 1.

LISTING 1. Unavoidable Divergence.
if (condition 1)
 do this block of operations
else if (condition 2)
 do that block of operations
else if (condition 3)
 do some block of operations
else
 do any block of operations

In this case the divergence can cause up to 75%

efficiency reduction, because the block of operation
requires hundreds of instructions, thus making the
algorithm unsuitable for SIMD parallel execution.

A. Program transformations

In order to exploit more parallelism from the resources
at hand, the program has to be transformed. The structure
of the computations and their schedule need to be changes,
so the program transformations will result with equivalent
program which will have better performance.

Since data access is the most expensive part of the
program execution, sometimes the program can be
transformed so the data is not loaded from memory and
calculated on the GPU device. In addition, another
important factor is to have enough data to process in order
to utilize the parallel resources. Therefore, it is prudent to
introduce more calculation even if there are not needed at
the moment, since in the following moments a requested
calculation could already been obtained.

V. PERFORMANCE ANALYSIS

In order to obtain relevant results, we propose using a

GPU device from the high-end segment. An example of a
high-end GPU device is the Nvidia Tesla C2070 GPU,
which is the flag holder device for Nvidia at the moment of
writing this paper.

Regarding parallelism, the Amdahl Law is plotted in
Fig. 1, where the x-axis is the number of processors p, and
the y-axis is the achieved speedup.

Fig. 2. Parallel speedup

There are three segments that can be noticed on the

plot. The segment I represents a relation between the
speedup and the number of processors, where by increasing
the number of processors. In the second segment, a
saturation is achieved, so the speedup stays constant with
the increasing the number of processors. The segment III,
indicates that increasing of the number of processors, can
lead to decreasing of the speedup, which is a consequence
of much more communication between the processors and
much less computing achieved.

Since for a given GPU device, the number of cores is
constant, the plotted curve will depend of the amount of
data that is being computed as it is presented in Fig. 3.

Fig. 3. Parallel speedups for different data amounts

113

Proceedings of Small Systems Simulation Symposium 2012, Niš, Serbia, 12th-14th February 2012

The curve 1 is the same curve as plotted in Fig 2.

Curves 2 and 3 present the speedup for larger data
quantities. Hence, we can conclude that for larger data
quantities, the curve achieves saturation much slower.

Therefore, the network simulator parallel module,
should scale well over different sizes of networks, in such a
way that the simulation scenarios of interest are in the
linear segment I, and possibly, if unavoidable in the
saturation segment II.

The parallel module should achieve maximal speedup
of at least x25 on a high-end TESLA C2070 GPU for the
overall execution of the network simulator. This is a
reasonable performance increase that is consistent with
many real-life applications ported to the GPU platform,
thus providing another example of achieved acceleration by
utilizing the computational power of modern
programmable GPU devices.

VI. CONCLUSION

Specific modules of the network simulators demand

high computational resources. Therefore, we propose a
parallel module for the network simulator in order to utilize
the computational performance of GPU devices. Usually
the network simulator algorithms run in single precision, so
the GPU devices are suitable, although the fact that the
GPUs support double precision which is still significantly
slower.

In our future work, we intend to develop an
implementation of a parallel module for one of the few
most widely used network simulators. Also, we would like
to evaluate how the GPU implementation of the network
simulator extension can perform in specific case network
topologies. In addition, we would like to search for the best
suitable data structures that can provide further
optimization. Beside the stand alone machine setup, we
would like to test our parallel module on a multi-GPU
setup. Additionally we would like to combine MPI and
OpenCL, in order to investigate how parallel module will
perform on a cluster of computers, where each computer
has a multi-GPU setup.

REFERENCES

[1] Weingartner, E., vom Lehn, H., Wehrle, K., "A

Performance Comparison of Recent Network

Simulators" in Conf. Rec. 2009. ICC '09. IEEE Int.
Conf. Communications, pp. 1-5.

[2] Harris, M.J., “General Purpose Computation on
GPUs”, retrieved June 2011 from
http://www.gpgpu.org/.

[3] NVIDIA CUDA, retrieved February 2010 from
http://developer.nvidia.com/object/cuda.html/.

[4] The OpenCL Specification, Version 1.0, document
Revision 43, 2009, retrieved February 2010 from
http://www.khronos.org/opencl/.

[5] Zeng, X., Bagrodia, R., Gerla, M., “GloMoSim: A
Library forParallel Simulation of Large-Scale Wireless
Networks”, in Proc.12th Workshop on Parallel and
Distributed Simulation, Banff, Alta.Canada, 1998, p.
154-161.

[6] Parallel Simulation Environment for Complex Systems
(PARSEC), retrieved June 2010 from
http://pcl.cs.ucla.edu/projects/parsec/.

[7] Cowie, J.H., Nicol D.M., and Ogielski A.T., “Modeling
the GlobalInternet”, Computing in Science and
Engineering, 1999.

[8] NS-2 Simulator, retrieved June 2010 from:
http://nsnam.isi.edu/nsnam/index.php.

[9] Di Caro, G. A., “Analysis of simulation environments
for mobile adhoc networks”, Technical Report No.
IDSIA-24-03, IDSIA / USISUPSI,BISON project,
Switzerland, 2003.

[10] Riley, G., Fujimoto, R.M., Ammar, M., “A
Generic Framework for Parallelization of Network
Simulations”, in Proc. 7th Int.Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems, 1999, p. 128-135.

[11] Riley, G.F., “The Georgia Tech Network
Simulator”, in Proc. of the Workshop on Models,
Methods, and Tools for Reproducible Network
Research (MoMe Tools), 2003.

[12] Varga, A., “The OMNeT++ discrete event
simulation system”, Proc. of the European Simulation
Multiconference (ESM '2001), Prague, Czech Republic,
2001.

[13] Sekercioglu, Y. A., Varga, A., Egan, G. K.,
“Parallel Simulation Made Easy With Omnet++”, in
Proc. of the European Simulation Symposium
(ESS2003), Oct. 2003, Delft, The Netherlands.

[14] Grama, A., Gupta, A., Karypis, G., Kumar, V.,
Introduction to Parallel Computing, 2nd Edition,
Addison-Wesley, Reading, MA, 2003.

114

Proceedings of Small Systems Simulation Symposium 2012, Niš, Serbia, 12th-14th February 2012

